
jmh - GiST 1/19/96, p 1

GiST: A Generalized Search Tree
for Database Systems

Joe Hellerstein
UC Berkeley

jmh - GiST 1/19/96, p 2

Road Map

■ Motivation

■ Intuition on Generalized Search Trees

■ Overview of GiST ADT

■ Example indices: integers, polygons & sets

■ Implementation challenges

■ Open problems in indexing research

jmh - GiST 1/19/96, p 3

Indexing in OO/OR Systems

■ Quick access to user-defined objects

■ Support queries natural to the objects

■ Two previous approaches
– Specialized Indices (“ABCDEFG-trees”)

» redundant code: most trees are very similar

» concurrency control, etc. tricky!

– Extensible B-trees & R-trees (Postgres/Illustra)
» B-tree or R-tree lookups only!

» E.g. ‘WHERE movie.video < ‘Terminator 2’

jmh - GiST 1/19/96, p 4

A Third Approach

■ A generalized search tree. Must be:

■ Extensible in terms of queries

■ General (B+-tree, R-tree, etc.)

■ Easy to extend

■ Efficient (match specialized trees)

■ Highly concurrent, recoverable, etc.

jmh - GiST 1/19/96, p 5

Uses for GiSTs

■ New indexes needed for new apps...
– find all supersets of S

– find all molecules that bind to M

– your favorite query here (multimedia?)

■ ...and for new queries over old domains:
– find all points in region from 12 to 2 o’clock

– find all strings that match R. E.

jmh - GiST 1/19/96, p 6

Database Search Trees from
50,000 feet

jmh - GiST 1/19/96, p 7

Database Search Trees from
50,000 feet

jmh - GiST 1/19/96, p 8

Database Search Trees from
40,000 feet

Internal Nodes (directory)

Leaf Nodes (linked list)

jmh - GiST 1/19/96, p 9

Database Search Trees from
30,000 feet

Internal Nodes (directory)

Leaf Nodes (linked list)

key1 key2 ...

jmh - GiST 1/19/96, p 10

GiST: Generalized Search Tree

■ Structure: balanced tree of (p, ptr) pairs
– p is a key “predicate”

– p holds for all objects below ptr

– keys on a page may overlap

■ Key predicates: a user-defined class
– This is the only extensibility required!

jmh - GiST 1/19/96, p 11

Key Methods

■ Search:
– Consistent(E,q): E.p ∧ q? (no/maybe)

■ Characterization
– Union(P): new key that holds for all tuples in P

■ Categorization
– Penalty(E1,E2):

 penalty of inserting E2 in subtree E1

– PickSplit(P): split P into two groups of entries

jmh - GiST 1/19/96, p 12

Search

■ General technique:
– traverse tree where Consistent is TRUE

■ For range predicates on ordered domain:
– user specifies IsOrdered

– user registers Compare(p1, p2) operator

– methods ensure ordered, non-overlapping keys

– traverse leftmost Consistent branch

– scan right across bottom.

jmh - GiST 1/19/96, p 13

Insert

■ descend tree along least increase in Penalty

■ if there’s room at leaf, insert there

■ else split according to PickSplit

■ propagate changes using Union

■ Notes:
– on overflow, can do R*-tree style reinsert

– for ordered keys, Penalty needs to keep order

jmh - GiST 1/19/96, p 14

Delete

■ find the entry via Search, and delete it

■ propagate changes using Union

■ on underflow:
– if ordered keys, do B+-tree style

borrow/coalesce

– else reinsert stuff on page and delete page

jmh - GiST 1/19/96, p 15

GiSTS over (B+-trees)

■ Logically, keys represent ranges [x,y)

■ Queries: Contains([a,b), v)

■ Consistent(E,q): (x<b) ∧ (y > a)

■ Union(P): [MIN(xi), MAX(yi))

■ Penalty(E1, E2):
– return MAX(y2 - y1, 0) + MAX(x1 - x2, 0)

– if E1 is leftmost or rightmost, drop a term

■ PickSplit(P): split evenly in order

jmh - GiST 1/19/96, p 16

Key Compression

■ Keys may take up too much room on a page

■ Two extra key methods:
– Compress(E)/Decompress(E)

■ Compression can be lossy:

 over-generalization OK

jmh - GiST 1/19/96, p 17

A B+-tree Page

Logical Representation:

Physical Representation (compressed):

[201, ∞)[137, 201)[60, 137)[40, 60)[∞ , 40)

2011376040<null>

jmh - GiST 1/19/96, p 18

B+-tree Compression

■ Compress(E=([x,y), ptr)):
– if E is leftmost return NULL, else return x

■ Decompress(E=(π, ptr)):
– if E is leftmost, let x = -∞, else let x = π.

– if E is rightmost, let y = ∞, else let y be the
value stored in the next key on the right.

– if E is rightmost on a leaf page, let y = x+1.

jmh - GiST 1/19/96, p 19

GiSTs over R2 (R-tree)

■ Logically, keys represent bounding boxes

■ Queries: Contains, Overlaps, Equals

■ Consistent(E,q): does E.p overlap q?

■ Union(P): bounding box of all entries

■ Compress(E): form bounding box

■ Decompress(E): identity function

■ Penalty(E,F): size(Union({E,F}) - size(E)

■ PickSplit(P): R-tree or R*-tree methods

jmh - GiST 1/19/96, p 20

GiSTs over P() (RD-tree)

■ Logically, keys represent bounding sets

■ Queries: Contains, Overlaps, Equals

■ Consistent(E,q): does E.p ∩ q = ∅?

■ Union(P): set-union of keys

■ Compress(E): Bloom filters, rangesets, etc.

■ Decompress(E): match compress

■ Penalty(E,F): |E.p ∪ F.p| - |E.p|

■ PickSplit(P): R-tree algorithms

jmh - GiST 1/19/96, p 21

An RD-tree

{CS1, CS11, Music1,
Music2, Math221, Math22,
Math223}

{CS1, Bus101, Bus102,
Bus103, Ec121, Ec122,
Ec123}

{CS1, CS786, CS888,
Math221, Music1,
Music788}

{Bus101, Bus102, Bus103, CS1}
{Bus101, Ec121, Ec122, Ec123}

{CS1, Bus101, Ec121}

{CS1, CS11, Math221}
{Music1, Music2, CS1}

{CS1, Math221, Math22, Math223}

{Music1, CS1, Math221}
{Music788, CS888, CS786}

{CS1}

jmh - GiST 1/19/96, p 22

Implementation Issues

■ In-memory efficiency: Node subclass

■ Concurrency, Recovery, Consistency
– Kornacker & Banks, VLDB95

■ Variable-Length Keys

■ Bulk Loading

■ Optimizer Integration

■ Extensibility & Efficiency

jmh - GiST 1/19/96, p 23

GiST Performance

■ B+-trees have O(log n) performance

■ R-trees, RD-trees have no such guarantee
– search may have to traverse multiple paths

– worst-case O(2n) to traverse entire tree

– aggravated by random I/O: much worse than
scan!

SO: when does it pay to build/use an index?

jmh - GiST 1/19/96, p 24

GiST Performance, cont.

■ As a first cut, look at 2 parameters:
– data overlap & compression loss

■ Experiment with Illustra’s R-trees
– Comb sets: {[1,10], [10001,10010], ...}

– 30 data sets, each of 10,000 combs

– vary data overlap, numranges (compression)

– 5 queries per dataset, searching for comb teeth

jmh - GiST 1/19/96, p 25

GiST Performance, cont.

0.2

Compression Loss

0 0.1 0.2 0.3 0.4 0.5
0

0.4
0.6

0.8
1

1000

2000

3000

4000

5000

Data Overlap

Avg. Number of I/Os

jmh - GiST 1/19/96, p 26

Future Directions in Indexing

■ Indexability theory:
– when is an index useful? Papadimitriou?

■ New things to index! Queries over:
– sets, sequences/text (REs), graphs, multimedia,

molecular structures...

■ Lossy compression techniques

■ Algorithmic improvements?
– (R*-tree techniques?)

jmh - GiST 1/19/96, p 27

The Gist of the GiST

■ Boil search trees down to their essence.

■ Unify B+-tree, R-tree, etc. in one ADT.

■ Extensible in terms of data and queries.

■ Opens research on indexability.

jmh - GiST 1/19/96, p 28

Status

■ Prototype implementation in Postgres95
– currently no variable-length keys, concurrency

■ Illustra/Informix port?

■ General purpose C++ library planned

■ Papers, etc. at:
– http://www.cs.berkeley.edu/~jmh/

